A lecture course on the interaction of microorganisms with other organisms and their environment. As the most abundant form of life, microorganisms have an enormous impact on the Earth. Subject areas include microbial evolution and biodiversity, metabolism and biogeochemical cycling, and how molecular biology has revolutionized our understanding of microbial life.
This course is designed to introduce students to biotechnology and its applications in a variety of fields, including medicine, food & beverage, agriculture, forensics, fisheries and environmental protection. The course explores the principles and methods of genetic, tissue and organismal engineering involving species from bacteria to humans. The social and ethical issues associated with biotechnologies such as GMOs, stem cells and cloning will also be discussed. Topics include: Recombinant DNA Technology, Genomics & Bioinformatics, Protein Technology, Microbial Biotechnology, Plant Biotechnology, Animal Biotechnology, Forensic Biotechnology, Environmental Biotechnology, Aquatic Biotechnology, Medical Biotechnology, Biotechnology Regulations, and Careers in Biotechnology.
This course explores a comprehensive array of discoveries in medical biotechnology, encompassing drugs, smartphone apps, generative artificial intelligence (including large language models and neural networks in general), data science, 3D printing and medical devices. It delves into a variety of biotechnology products, examining the regulatory pathways for experiments that support new biotechnologies, the fundamental scientific concepts underlying these technologies, patents, and their business context.
This course addresses the diversity of marine life, and the physical, chemical, and biological processes occurring in marine ecosystems. Students will explore current methods and theories in marine ecology and consider the societal importance of marine resources with a special emphasis on Canada's coasts.
This course focuses on the human immune system and its relationship to health and disease. It uncovers the mechanisms behind defense against pathogens and etiology of autoimmune diseases, allergies, and immunodeficiencies. It provides a detailed description of innate and adaptive immune responses, immune cells and organs, antigen presentation, cell-mediated effector responses, tolerance and autoimmunity.
This course provides an introduction to the biological study of marine mammals and their populations. It explores the evolution of marine mammals, their adaptations to aquatic environments, as well as their population and behavioural ecology. The course also investigates threats to marine mammal populations and their national and global conservation.
Reproduction and embryonic development in humans are emphasized. After a general review of human reproduction, the formation of sperm and eggs is analyzed, followed by an in-depth analysis of fertilization in vivo and in vitro. Early embryonic developmental processes are studied with a view to how the embryo becomes organized so that all of the tissues and organs of the adult body form in the right places at the proper times. The course ends with an in-depth analysis of limb development and organ regeneration. The relevance of the material to such topics as human infertility, contraception, cloning, biotechnology and disease is continually addressed.
This course provides third year undergraduate students (after completion of at least 9.5 but not more than 14.0 credits), who have developed some knowledge of Biology and its research methods, another opportunity to work in the research project of a professor in return for course credit. Students enrolled have the opportunity to become involved in original research, enhance their research skills and share in the excitement of acquiring new knowledge and in the discovery process of science. Participating faculty members post their project descriptions for the following summer and fall/winter sessions in early February and students are invited to apply in early March. See Experiential and International Opportunities for more details.
This course provides third year undergraduate students (after completion of at least 9.5 but not more than 14 credits), who have developed some knowledge of Biology and its research methods, another opportunity to work in the research project of a professor in return for course credit. Students enrolled have the opportunity to become involved in original research, enhance their research skills and share in the excitement of acquiring new knowledge and in the discovery process of science. Participating faculty members post their project descriptions for the following summer and fall/winter sessions in early February and students are invited to apply in early March. See Experiential and International Opportunities for more details.
Through a part-time, unpaid, 200-hour work placement, fourth year students apply biology content and skills. Placements are made throughout the GTA in both the private (e.g. pharmaceutical or biotech companies) or public (e.g. Peel Region Medical Office, hospitals, Great Lakes Laboratory) sector. Biweekly class meetings plus year-end report and presentation are required. Students in a biology specialist program are given priority. Updated application information will be on-line at www.utm.utoronto.ca/intern by February 1st of each year. Please see the Internship Office (DV 3201D) for more information.
An advanced student-led course examining contemporary topics in neurobiology. Students will read, criticize, and present on current areas of neurobiology, which could include the cell and molecular basis for neural disease, developmental neurobiology, sensory reception, neurophysiology, neural communication, and information processing.
Neurobiology, the biological study of the nervous system, investigates the electrical and chemical processes animals use to regulate internal events and interface with their environments. Invertebrates have provided crucial neurobiological insights and are often more accessible study systems than vertebrates. This course addresses some key historical contributions, and discusses the future of invertebrate systems, where recent technological advances are opening up new ways to explore invertebrate neurobiology and evolution. Students will do practicals, using computer simulations of neurons, to develop an understanding of neurons and other excitable cells.
Bats (Chiroptera) are the most ecologically diverse order of mammals, second only to rodents in species number. Many are endangered, others are reservoirs for human disease. Bats provide various ecosystems services, from insect control to pollination and seed dispersal. This course will first focus on the otherwise rare combination of flight and echolocation in most bats. Specific species and families of bats will then be considered in a phylogenetically structured way to reveal aspects of their distinct biology, and strategies for their conservation and management.
A combination of lectures and tutorials. The course will emphasize group discussion and critiques of current publications in the field. The theme of the course is expected to be topical and current and to vary from year to year, with the interests of the faculty member(s) teaching the course. Course themes are expected to range from structure and function of whole ecosystems (e.g. the collapse of fisheries) to evolutionary ecology (e.g. the evolution of emergent diseases).
State of the art techniques used in the genetic, molecular, statistical and neurobiological analysis of behaviour are discussed. We focus on behaviour-genetic analysis of olfaction, foraging, rhythms and sex in three model systems (the worm C. elegans, the fruit fly D. melanogaster and the mouse). We discuss how information from these model organisms can be used to shed light on behaviour genetics of non-model organisms including humans.
This course covers contemporary topics in systems neuroscience, focusing on the relationship between the circuit structure and function of mammalian brains. We review the current understanding of topics concerning signal transduction and the peripheral circuits, information processing in the central nerve system, neuronal cell types and connectivity, development and critical period plasticity of sensory cortices, and motor control. Students present and critique the latest research progress on these issues.
Experiments are designed to familiarize students with techniques and experimental design commonly used in the study of physiology. A one-hour lecture each week provides an experimental and theoretical basis for each laboratory. Topics include pharmacology, enzyme kinetics, neurophysiology, respiration, and metabolic rate.
A lecture course with a seminar component designed to introduce the student to the physiological characteristics of insects. The physiology of the integument, metamorphosis, reproduction, diapause and the physiological basis of insect control are discussed in detail.
An advanced, student-led seminar course on contemporary subjects in cell physiology. Students will examine, review, criticize and present primary literature on fundamental topics such as ion transport, water transport, membrane excitability, intracellular transport, and secretion applied to a variety of physiological systems. Emphasis will be placed on understanding how diverse cell types carry out specific physiological functions.
Climate change is affecting life on earth at all levels from cells to ecosystems. As a result, shifts in the distribution of species, the timing of biological events, and large impacts on natural resources, agriculture, and forestry may be seen. This course explores past climate, predictions of future climate, impacts of climate change on biological systems, and potentials for adaptation. Mitigation of climate change impacts on biological systems will also be discussed.
The integration of cardiovascular, renal, respiratory and muscle physiology will be examined with a problem-based approach. The response of these systems to challenges such as altitude, depth under water, and exercise will be examined. Laboratory activities will give students hands on experience measuring physiological variables of these systems with primarily human subjects, while other examples will be used to examine the diversity of response to environmental challenges throughout the animal kingdom.
Students may choose from a variety of field courses offered through a cooperative arrangement among ecologists at ten Ontario universities. Courses involve a two-week period at a field site in early May or late August, and require a major paper or project report be submitted within six weeks of course completion. A fee for room and board is usually charged over and above tuition. Lists of courses available are posted at http://www.oupfb.ca/info.html Please check this link in January for application dates. Information can also be found on the UTM Biology website.
Genetic information shapes almost all aspects of life. How is this information organized and inherited? How does it influence individuals and how does help to understand disease? The course explores the structure and function of chromatin i.e. the management of biological information. We will explore how the genome is packaged, expressed, replicated and repaired. We will look into chromosome sets and inheritance, accessibility of the genome to the molecular machinery, DNA repair, and modern techniques in research and diagnostics.
Gene expression is regulated during development in multicellular organisms. The study of gene regulation is tightly linked to our understanding of cell types and functions. This course provides an overview of the molecular aspects of gene expression, including transcription, regulatory RNAs, chromatin regulation, and genomic regulation. Students will read, critique, and present recently published research articles on gene regulation in eukaryotes.
Organisms show a remarkable plasticity that allows them to grow and survive in an ever-changing environment. Epigenetic mechanisms provide a fascinating layer of regulation that integrates the genome and environment. In addition, epigenetic marks can contribute to lasting effects across generations without changes in the underlying DNA sequence. This course explores how plant and animal epigenomes respond to change such as stresses or developmental transitions. Influences on genome function, phenotype, and how epigenetic marks are transmitted will be discussed interactively drawing on recent primary literature and modern technological advances.
Individuals move throughout their lifecycle. They find a home, escape predation, and search for food and mates. We will explore the patterns and causes of different movement types and their eco-evolutionary consequences, from the individual level, up to the whole ecosystem. Examples will come from both terrestrial and aquatic realms.
Biology has become a data-driven science with the arrival of complex datasets. Extracting information from these large-scale experiments requires approaches that unify statistics and computer science. The course will focus on strengthening mathematical intuition on core topics such as hypothesis testing and statistical models while connecting these to machine learning.
This course explains the fundamental principles of biological data analysis by focusing on neuroscience datasets. Students will learn methods for sampling data, testing hypotheses, multiple linear regression, PCA, clustering through both lectures and practical exercises. These methods will be discussed in the context of current research in understanding brain functions.
During animal development, a fertilized egg becomes a complex multicellular organism, in which groups of cells are organized into specialized structures. In this course, cellular, molecular, and genetic experimental techniques will be used to understand key events during animal development. Topics, including axis formation, stem cell patterning, and regeneration, will be studied using classic developmental model organisms.
Lectures will provide an in-depth coverage of modern methods of phylogenetic reconstruction including molecular systematics based on DNA sequences. The principles and philosophy of classification will be taught with an emphasis on 'tree-thinking', one of the most important conceptual advances in evolutionary biology. Tutorials will focus on recent developments in the study of evolutionary patterns while gaining proficiency in reading, presenting, and critiquing scientific papers.